Invariant Cocycles , Random Tilings and the Super - Kand Strong Markov
نویسنده
چکیده
We consider 1-cocycles with values in locally compact, second countable abelian groups on discrete, nonsingular, ergodic equivalence relations. If such a cocycle is invariant under certain automorphisms of these relations we show that the skew product extension deened by the cocycle is ergodic. As an application we obtain an extension of many of the results in 9] to higher-dimensional shifts of nite type, and prove a transitivity result concerning rearrangements of certain random tilings.
منابع مشابه
Invariant Cocycles, Random Tilings and the Super-K and Strong Markov Properties
We consider 1-cocycles with values in locally compact, second countable abelian groups on discrete, nonsingular, ergodic equivalence relations. If such a cocycle is invariant under certain automorphisms of these relations we show that the skew product extension defined by the cocycle is ergodic. As an application we obtain an extension of many of the results in [9] to higher-dimensional shifts ...
متن کاملADK Entropy and ADK Entropy Rate in Irreducible- Aperiodic Markov Chain and Gaussian Processes
In this paper, the two parameter ADK entropy, as a generalized of Re'nyi entropy, is considered and some properties of it, are investigated. We will see that the ADK entropy for continuous random variables is invariant under a location and is not invariant under a scale transformation of the random variable. Furthermore, the joint ADK entropy, conditional ADK entropy, and chain rule of this ent...
متن کاملOn Recurrent Cocycles and the Non-existence of Random Xed Points
This paper deals with cocycles over ergodic metric dynamical systems with values in the semi-direct product of Z 2 and R. We show that such cocycles are recurrent under very general assumptions. Furthermore, we give criteria for the existence of invariant measures for group valued cocycles. With that, examples of continuous random dynamical systems on a compact interval without random xed point...
متن کاملCoherent structures and isolated spectrum for Perron–Frobenius cocycles
We present an analysis of one-dimensional models of dynamical systems that possess “coherent structures”; global structures that disperse more slowly than local trajectory separation. We study cocycles generated by expanding interval maps and the rates of decay for functions of bounded variation under the action of the associated Perron–Frobenius cocycles. We prove that when the generators are ...
متن کاملStability and Approximation of Random Invariant Densities for Lasota-yorke Map Cocycles
We establish stability of random absolutely continuous invariant measures (acims) for cocycles of random Lasota-Yorke maps under a variety of perturbations. Our family of random maps need not be close to a fixed map; thus, our results can handle very general driving mechanisms. We consider (i) perturbations via convolutions, (ii) perturbations arising from finite-rank transfer operator approxim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007